PRACTICE DRUG CALCULATIONS - SECTION 1

Questions		Answers
1	Convert the following: (a) 0.05 g to mg (b) 0.025 Litre to mLs (c) 1575 micrograms to mg (d) 750 mg to grams	
2	A patient is prescribed 0.25 mg of digoxin orally once daily. How many tablets should you give? (Stock $=$ digoxin 250 microgram tablets)	
3	A patient is prescribed insulin 22 units subcutaneously. How many mLs should you give? (Stock $=10 \mathrm{~mL}$ vial of 100 units in 1 mL)	
4	You draw up 10 mL of 2% lidocaine in a syringe. How many mg of lidocaine is there in 10 mL ?	
5	You have a stock vial of diclofenac (75 mg in 3 mL) and need to draw up a dose of 50 mg for your patient. How many mLs should you draw up to give this dose?	
6	A patient weighing 60 kg is prescribed intravenous dopamine 4 micrograms $/ \mathrm{kg} /$ minute. Calculate the infusion rate in $\mathrm{mLs} /$ hour. (Stock = dopamine 200 mg in 50 mL glucose 5\%)	
7	What is the total daily dose in mg , when drug B is prescribed to an adult weighing 75 kg at dose of 40 micrograms $/ \mathrm{kg} /$ day in 3 divided doses?	

8	How many mg is required for a single dose in Q7 above?	
9	To administer 500 micrograms of adrenaline intravenously, how many mLs should you give? (Stock = adrenaline 10 mL solution of 1 in 10 000)	
10	To administer 400 micrograms of folic acid syrup orally, how many mLs should you give? (Stock = folic acid 2.5 mg in 5 mLs)	
11	If you want to administer $3 \mathrm{mg} / \mathrm{kg}$ of 1% lidocaine to a 72 kg man, how many mLs should you give?	
12	To prepare 62.5 micrograms of digoxin for intravenous administration, how many mLs should you give? (Stock = digoxin 500 micrograms in 2 mL)	
13	You are required to administer 150 mg hydrocortisone intravenously, how many mLs should you give? (Stock = hydrocortisone 100 mg in 2 mL)	
14	To administer heparin 3500 units, how many mLs is required? (Stock = heparin 5000 units in 1 mL) A child weighing 19 kg requires 400 micrograms/kg of adrenaline 1 in 1000 for nebulisation with a maximum dose of 5 mg. a) What dose should be prescribed for this child?	

16	A patient weighing 65 kg is prescribed intravenous aminophylline 500 micrograms/kg/hour. Calculate the infusion rate in $\mathrm{mLs} /$ hour. (Stock = aminophylline 500 mg in 500 mL sodium chloride 0.9%)	
17	A patient weighing 75 kg is prescribed intravenous phenytoin 1500 mg . Over how many minutes can you give the infusion over so that the maximum rate of 50 $\mathrm{mg} /$ minute is achieved?	
18	A patient weighing 80 kg is prescribed subcutaneous tinzaparin 175 units/kg once daily. How many mLs should be administered to the patient? (Stock = tinzaparin 20000 units in 2 mL)	
19	A patient is prescribed prednisolone 40 mg once daily in the morning for 5 days. a) How many tablets should you give the patient every morning? b) What is the total number of 5 mg tablets required to complete the course? (Stock = prednisolone 5 mg tablets)	
20	You are required to administer 8 mmols of magnesium sulphate intravenously. How many mLs of magnesium sulphate should you draw up for further dilution? (Stock $=$ magnesium sulphate 5 g in 10 mLs ; where $1 \mathrm{~g}=4$ mmols of magnesium)	

ANSWERS TO QUESTIONS IN SECTION 1

1	(a) 50 mg $0.05 \mathrm{~g} \mathrm{X} 1000=50 \mathrm{mg}$ (b) 25 mLs $0.025 \mathrm{LX} 1000=25 \mathrm{mLs}$ (c) 1.575 mg 1575 micrograms $\div 1000=1.575 \mathrm{mg}$ (d) 0.75 g $750 \mathrm{mg} \div 1000=0.75 \mathrm{~g}$
2	One tablet NB The correct way of writing the dose on the drug chart is 250 micrograms
3	$\begin{aligned} & 0.22 \mathrm{~mL} \\ & (22 \text { units } \div 100 \text { units }) \times 1 \mathrm{~mL}=0.22 \mathrm{~mL} \end{aligned}$
4	200 mg $2 \%=2 \mathrm{~g}$ lidocaine in 100 mL Therefore 0.2 g in 10 mL $0.2 \mathrm{~g} \mathrm{X} 1000=200 \mathrm{mg}$
5	$\begin{aligned} & 2 \mathrm{~mL} \\ & (50 \mathrm{mg} \div 75 \mathrm{mg}) \times 3=2 \mathrm{~mL} \end{aligned}$
6	$3.6 \mathrm{~mL} /$ hour $60 \mathrm{~kg} \times 4$ micrograms $=240$ micrograms $/ \mathrm{min}$ To convert to micrograms/hour: 240 micrograms X $60=14400$ micrograms/hour To convert to $\mathrm{mg} /$ hour: 14400 micrograms $\div 1000=14.4 \mathrm{mg} /$ hour To convert to mLs/hour:

	$(14.4 \mathrm{mg} \div 200 \mathrm{mg}) \times 50 \mathrm{~mL}=3.6 \mathrm{~mL} / \mathrm{hour}$
7	$3 \mathrm{mg}$ 75 kg X 40 micrograms $=3000$ micrograms which is equal to 3 mg
8	$\begin{aligned} & 1 \mathrm{mg} \\ & 3 \mathrm{mg} \text { per day } \div 3 \text { doses }=1 \mathrm{mg} \end{aligned}$
9	5 mL 1 in $10000=1$ in $10000=1 \mathrm{~g}$ in 10000 mLs , which is the same as: 1000 mg in $10000 \mathrm{mLs}=1 \mathrm{mg}$ in 10 mLs Convert this to micrograms: 1 mg in $10 \mathrm{mLs}=1000$ micrograms in 10 mLs Therefore (500 micrograms $\div 1000$ micrograms) $\times 10 \mathrm{mLs}=5 \mathrm{mLs}$
10	0.8 mL 2.5 mg in $5 \mathrm{mLs}=2500$ micrograms in 5 mL (400 micrograms $\div 2500$ micrograms) $\times 5 \mathrm{~mL}=0.8 \mathrm{~mL}$
11	$\begin{aligned} & 21.6 \mathrm{mLs} \\ & 3 \mathrm{mg} \times 72 \mathrm{~kg}=216 \mathrm{mg} \\ & 1 \%=1 \mathrm{~g} \text { in } 100 \mathrm{mLs}=1000 \mathrm{mg} \text { in } 100 \mathrm{mLs} \\ & (216 \mathrm{mg} \div 1000 \mathrm{mg}) \times 100 \mathrm{mLs} \\ & =21.6 \mathrm{mLs} \end{aligned}$
12	$0.25 \mathrm{~mL}$ (62.5 micrograms $\div 500$ micrograms) $\times 2 \mathrm{~mL}=0.25 \mathrm{~mL}$
13	$\begin{aligned} & 3 \mathrm{~mL} \\ & (150 \mathrm{mg} \div 100 \mathrm{mg}) \times 2 \mathrm{~mL}=3 \mathrm{~mL} \end{aligned}$
14	$\begin{aligned} & 0.7 \mathrm{~mL} \\ & \text { (3500 units } \div 5000 \text { units) } \times 1 \mathrm{~mL}=0.7 \mathrm{~mL} \end{aligned}$

15	a) 5 mg b) 5 mL a) 400 microgram $X 19 \mathrm{~kg}$ $=7600$ micrograms which is equivalent to 7.6 mg ; however maximum dose is 5 mg . b) 1 in $1000=1 \mathrm{~g}$ in 1000 mL Equivalent to 1000 mg in 1000 mL $(5 \mathrm{mg} \div 1000 \mathrm{mg}) \times 1000 \mathrm{~mL}=5 \mathrm{~mL}$
16	$\begin{aligned} & 32.5 \mathrm{~mL} / \text { hour } \\ & 500 \mathrm{micrograms} \times 65 \mathrm{~kg} \\ & =32500 \text { micrograms/hour } \\ & =32.5 \mathrm{mg} / \text { hour } \\ & (32.5 \mathrm{mg} \div 500 \mathrm{mg}) \times 500 \mathrm{~mL}=32.5 \mathrm{~mL} / \text { hour } \end{aligned}$
17	30 minutes To give 1500 mg at a maximum rate of $50 \mathrm{mg} /$ minute: $1500 \mathrm{mg} \div 50 \mathrm{mg}=30$ minutes
18	$1.4 \mathrm{~mL}$ 175 units $X 80 \mathrm{~kg}=14000$ units (14000 units $\div 20000$ units) $\times 2 \mathrm{~mL}=1.4 \mathrm{~mL}$
19	a) 8 tablets $40 \mathrm{mg} \div 5 \mathrm{mg}=8$ b) 40 tablets $8 \times 5=40$
20	4 mLs $1 \mathrm{~g}=4$ mmols therefore $2 \mathrm{~g}=8 \mathrm{mmols}$ $(2 \mathrm{~g} \div 5 \mathrm{~g}) \times 10 \mathrm{~mL}=4 \mathrm{mLs}$

PRACTICE DRUG CALCULATIONS - SECTION 2

Questions		Answers
1	What does IV adrenaline 1 in 10000 represent? Express in milligrams and millilitres?	
2	What dose of enoxaparin is required to treat a deep vein thrombosis for a patient weighing 74 kg with normal renal function? Write your answer to the nearest 10 mg . (BNF dose $1.5 \mathrm{mg} / \mathrm{kg}$ subcutaneously every 24 hours)	
3	The dietician asks you to calculate how many kcals a patient has received via IV fluids. So far today, 2 L of 5\% glucose has been administered to the patient. (Each gram of glucose represents 4 kcal)	
4	What is the dose of lidocaine in millilitres using 1% lidocaine and 2% lidocaine for a patient requiring 186 mg for local anaesthesia?	1\%
5	A 7-year-old child is prescribed IV aciclovir for the treatment of herpes simplex at a dose of $250 \mathrm{mg} / \mathrm{m}^{2}$ every 8 hours. How many mg is required for a single dose? (Weight $=25 \mathrm{~kg}$ and height $=1.24 \mathrm{~m})$ To ascertain body surface area (m^{2}) click on the following link: https://bnfc.nice.org.uk/guidance/body-surface-area-in-children-image.htm	

6	How would you express 5000000 micrograms in milligrams?	
7	A 26-year-old patient is diagnosed with diabetic ketoacidosis and you wish to start a fixed rate intravenous insulin infusion at 0.1 units/kg/hr, as per Trust policy. How much insulin per hour will you prescribe for an 85 kg patient?	
8	A patient is prescribed morphine 7.5 mg IV. How many mLs needs to be drawn up into a syringe, if the morphine ampoule contains 2 mL of $10 \mathrm{mg} / \mathrm{mL}$?	
9	You prescribe 1 litre 0.9% sodium chloride over 8 hours. How many millilitres per hour is this equivalent to?	
10	A patient requires an IV infusion of glyceryl trinitrate (GTN) at a rate of 100 micrograms $/ \mathrm{minute}$. You only have three ampoules of GTN. How many hours would an infusion using these three ampoules last for? (Stock $=$ GTN ampoules of $10 \mathrm{mg} / 10 \mathrm{~mL}$)	

ANSWERS TO QUESTIONS IN SECTION 2

1	1000 mg in 10000 mL 1 in $10000=1 \mathrm{~g}$ in 10000 mL Convert this to mg $1 \mathrm{~g} \mathrm{X} 1000=1000 \mathrm{mg}$ in 10000 mL NB This can be simplified to 1 mg in 10 mL
2	110 mg $1.5 \mathrm{mg} \times 74 \mathrm{~kg}=111 \mathrm{mg}$ 110 mg to the nearest 10 mg
3	400 kcal 5% Glucose $=5 \mathrm{~g}$ in 100 mL Therefore 2 litres contain $\begin{aligned} & 2 \text { Litres }=2000 \mathrm{~mL} \\ & (2000 \mathrm{~mL} \div 100 \mathrm{~mL}) \times 5 \mathrm{~g}=100 \mathrm{~g} \\ & 100 \mathrm{~g} \mathrm{X} 4 \mathrm{kcal}=400 \mathrm{kcal} \end{aligned}$
4	Lidocaine $1 \%=18.6 \mathrm{~mL}$ Lidocaine $1 \%=1 \mathrm{~g}$ in $100 \mathrm{~mL}=1000 \mathrm{mg}$ in 100 mL $(186 \mathrm{mg} \div 1000 \mathrm{mg}) \times 100 \mathrm{~mL}=18.6 \mathrm{~mL}$ Lidocaine 2\% = 9.3 mL Lidocaine $2 \%=2 \mathrm{~g}$ in $100 \mathrm{~mL}=2000 \mathrm{mg}$ in 100 mL $(186 \mathrm{mg} \div 2000 \mathrm{mg}) \times 100 \mathrm{~mL}=9.3 \mathrm{~mL}$
5	$230 \mathrm{mg}$ Body surface area for a child weighing 25 kg is $0.92 \mathrm{~m}^{2}$ (see BNF) $250 \mathrm{mg} \times 0.92 \mathrm{~m}^{2}=230 \mathrm{mg}$

6	$\begin{aligned} & 5000 \mathrm{mg} \\ & \text { To convert to } \mathrm{mg} \\ & 5000000 \text { micrograms } \div 1000 \\ & =5000 \mathrm{mg} \end{aligned}$
7	8.5 units per hour 0.1 units $/ \mathrm{kg} / \mathrm{hr}=$ 0.1 units $\times 85 \mathrm{~kg}=$ 8.5 units / hour
8	$\begin{aligned} & 0.75 \mathrm{~mL} \\ & (7.5 \mathrm{mg} \div 10 \mathrm{mg}) \times 1 \mathrm{~mL} \\ & =0.75 \mathrm{~mL} \end{aligned}$
9	$\begin{aligned} & 125 \mathrm{~mL} / \text { hour } \\ & 1 \text { Litre }=1000 \mathrm{~mL} \\ & 1000 \mathrm{~mL} \div 8 \text { hours } \\ & =125 \mathrm{~mL} / \text { hour } \end{aligned}$
10	5 hours 1 ampoule $=10 \mathrm{mg}$ in 10 mL $3 \mathrm{ampoules}=30 \mathrm{mg}$ in 30 mL Convert this to micrograms $30 \mathrm{mg} \times 1000=30000$ micrograms at a rate of 100 micrograms/minute therefore 30000 micrograms $\div 100$ micrograms $=300$ minutes Convert to hours 300 minutes $\div 60$ minutes $=5$ hours

Adapted from calculations questions clinical skills lab Whipp's Cross Hospital 2003 by J Hewitt and Dr E Tsarfati 2013. Additional questions and review by H Walker and S Lau.

Additional questions reviewed and updated by Uzma Shaikh and Thanam Ravagan in June 2020.

REFLECTIVE RECORD

Reflections from prescribing exercise

Date

\square

What I learned from this activity:
\square

Am I going to change anything as a result of this session? / How will I apply learning to my clinical practice?

