PRACTICE DRUG CALCULATIONS - SECTION 1

Que	stions	Answers
1	Convert the following:	
	(a) 0.05 g to mg	
	(b) 0.025 Litre to mLs	
	(c) 1575 micrograms to mg	
	(d) 750 mg to grams	
2	A patient is prescribed 0.25 mg of digoxin orally once daily.	
	How many tablets should you give?	
	(Stock = digoxin 250 microgram tablets)	
3	A patient is prescribed insulin 22 units subcutaneously.	
	How many mLs should you give?	
	(Stock = 10 mL vial of 100 units in 1 mL)	
4	You draw up 10 mL of 2 % lidocaine in a syringe.	
	How many mg of lidocaine is there in 10 mL?	
5	You have a stock vial of diclofenac (75 mg in 3 mL) and need	
	to draw up a dose of 50 mg for your patient.	
	How many mLs should you draw up to give this dose?	
6	A patient weighing 60 kg is prescribed intravenous	
	dopamine 4 micrograms/kg/minute.	
	Calculate the infusion rate in mLs/hour.	
	(Stock = dopamine 200 mg in 50 mL glucose 5%)	
7	What is the total daily dose in mg, when drug B is prescribed	
	to an adult weighing 75 kg at dose of 40 micrograms/kg/day	
	in 3 divided doses?	

8	How many mg is required for a single dose in Q7 above?	
9	To administer 500 micrograms of adrenaline intravenously,	
	how many mLs should you give?	
	(Stock = adrenaline 10 mL solution of 1 in 10 000)	
10	To administer 400 micrograms of folic acid syrup orally, how	
	many mLs should you give?	
	(Stock = folic acid 2.5 mg in 5 mLs)	
11	If you want to administer 3 mg / kg of 1 % lidocaine to a 72	
	kg man, how many mLs should you give?	
12	To prepare 62.5 micrograms of digoxin for intravenous	
	administration, how many mLs should you give?	
	(Stock = digoxin 500 micrograms in 2 mL)	
13	You are required to administer 150 mg hydrocortisone	
	intravenously, how many mLs should you give?	
	(Stock = hydrocortisone 100 mg in 2 mL)	
14	To administer heparin 3500 units, how many mLs is	
	required?	
	(Stock = heparin 5000 units in 1 mL)	
15	A child weighing 19 kg requires 400 micrograms/kg of	
	adrenaline 1 in 1000 for nebulisation with a maximum dose	
	of 5 mg.	
	a) What dose should be prescribed for this child?	
	b) How many mLs of adrenaline is required?	

16	A patient weighing 65 kg is prescribed intravenous	
	aminophylline 500 micrograms/kg/hour. Calculate the	
	infusion rate in mLs/hour.	
	(Stock = aminophylline 500 mg in 500 mL sodium chloride	
	0.9%)	
17	A patient weighing 75 kg is prescribed intravenous	
	phenytoin 1500 mg. Over how many minutes can you give	
	the infusion over so that the maximum rate of 50	
	mg/minute is achieved?	
18	A patient weighing 80 kg is prescribed subcutaneous	
	tinzaparin 175 units/kg once daily. How many mLs should	
	be administered to the patient?	
	(Stock = tinzaparin 20 000 units in 2 mL)	
19	A patient is prescribed prednisolone 40 mg once daily in the	
	morning for 5 days.	
	a) How many tablets should you give the patient every	
	morning?	
	morning? b) What is the total number of 5 mg tablets required to	
	b) What is the total number of 5 mg tablets required to	
20	b) What is the total number of 5 mg tablets required to complete the course?	
20	b) What is the total number of 5 mg tablets required to complete the course?(Stock = prednisolone 5 mg tablets)	
20	b) What is the total number of 5 mg tablets required to complete the course? (Stock = prednisolone 5 mg tablets) You are required to administer 8 mmols of magnesium	
20	b) What is the total number of 5 mg tablets required to complete the course? (Stock = prednisolone 5 mg tablets) You are required to administer 8 mmols of magnesium sulphate intravenously. How many mLs of magnesium	

ANSWERS TO QUESTIONS IN SECTION 1

	(14.4 mg ÷ 200 mg) X 50 mL = 3.6 mL/hour
7	3 mg
	75 kg X 40 micrograms = 3000 micrograms which is equal to 3 mg
8	1 mg
	3 mg per day ÷ 3 doses = 1 mg
9	5 mL
	1 in 10 000 = 1 in 10 000 = 1 g in 10 000 mLs, which is the same as:
	1000 mg in 10 000 mLs = 1 mg in 10 mLs
	Convert this to micrograms:
	1 mg in 10 mLs = 1000 micrograms in 10 mLs
	Therefore (500 micrograms ÷ 1000 micrograms) X 10 mLs = 5 mLs
10	0.8 mL
	2.5 mg in 5 mLs = 2500 micrograms in 5 mL
	(400 micrograms ÷ 2500 micrograms) X 5 mL = 0.8 mL
11	21.6 mLs
	3 mg X 72 kg = 216 mg
	1 % = 1 g in 100 mLs = 1000 mg in 100 mLs
	(216 mg ÷ 1000 mg) X 100 mLs
	= 21.6 mLs
12	0.25 mL
	(62.5 micrograms ÷ 500 micrograms) X 2 mL = 0.25 mL
13	3 mL
	(150 mg ÷ 100 mg) X 2 mL = 3 mL
14	0.7 mL
	(3500 units ÷ 5000 units) X 1 mL = 0.7 mL

	a) 5 mg
	b) 5 mL
	a) 400 microgram X 19 kg
	= 7600 micrograms which is equivalent to 7.6 mg; however maximum dose is 5 mg.
	b) 1 in 1000 = 1 g in 1000 mL
	Equivalent to 1000 mg in 1000 mL
	(5 mg ÷ 1000 mg) X 1000 mL = 5 mL
16	32.5 mL / hour
	500 micrograms X 65 kg
	= 32 500 micrograms/hour
	= 32.5 mg/hour
	(32.5 mg ÷ 500 mg) X 500 mL = 32.5 mL/hour
17	30 minutes
	To give 1500 mg at a maximum rate of 50 mg/minute:
	1500 mg ÷ 50 mg = 30 minutes
18	1.4 mL
	175 units X 80 kg = 14 000 units
	(14 000 units ÷ 20 000 units) X 2 mL = 1.4 mL
19	a) 8 tablets
	40 mg ÷ 5 mg = 8
	b) 40 tablets
	8 x 5 = 40
20	8 x 5 = 40 4 mLs
20	
	175 units X 80 kg = 14 000 units (14 000 units ÷ 20 000 units) X 2 mL = 1.4 mL a) 8 tablets 40 mg ÷ 5 mg = 8

PRACTICE DRUG CALCULATIONS – SECTION 2

Que	stions	Answers
1	What does IV adrenaline 1 in 10 000 represent?	
	Express in milligrams and millilitres?	
2	What dose of enoxaparin is required to treat a deep vein	
	thrombosis for a patient weighing 74 kg with normal renal	
	function? Write your answer to the nearest 10 mg.	
	(BNF dose 1.5 mg/kg subcutaneously every 24 hours)	
3	The dietician asks you to calculate how many kcals a patient	
	has received via IV fluids. So far today, 2 L of 5% glucose has	
	been administered to the patient.	
	(Each gram of glucose represents 4 kcal)	
4	What is the dose of lidocaine in millilitres using 1 %	1%
	lidocaine and 2 % lidocaine for a patient requiring 186 mg	
	for local anaesthesia?	2%
5	A 7-year-old child is prescribed IV aciclovir for the treatment	
	of herpes simplex at a dose of 250 mg/m ² every 8 hours.	
	How many mg is required for a single dose?	
	(Weight = 25 kg and height = 1.24 m)	
	To ascertain body surface area (m²) click on the following	
	link:	
	https://bnfc.nice.org.uk/guidance/body-surface-area-in-	
	<u>children-image.html</u>	

6	How would you express 5 000 000 micrograms in	
	milligrams?	
7	A 26-year-old patient is diagnosed with diabetic	
	ketoacidosis and you wish to start a fixed rate intravenous	
	insulin infusion at 0.1 units/kg/hr, as per Trust policy. How	
	much insulin per hour will you prescribe for an 85 kg	
	patient?	
8	A patient is prescribed morphine 7.5 mg IV. How many mLs	
	needs to be drawn up into a syringe, if the morphine	
	ampoule contains 2 mL of 10 mg/mL?	
9	You prescribe 1 litre 0.9% sodium chloride over 8 hours.	
	How many millilitres per hour is this equivalent to?	
10	A patient requires an IV infusion of glyceryl trinitrate (GTN)	
	at a rate of 100 micrograms/minute. You only have three	
	ampoules of GTN. How many hours would an infusion using	
	these three ampoules last for?	
	(Stock = GTN ampoules of 10 mg/10 mL)	

ANSWERS TO QUESTIONS IN SECTION 2

1	1000 mg in 10 000 mL
	1 in 10 000 = 1 g in 10 000 mL
	Convert this to mg
	1 g X 1000 = 1000 mg in 10 000 mL
	NB This can be simplified to 1 mg in 10 mL
2	110 mg
	1.5 mg X 74 kg = 111 mg
	110 mg to the nearest 10 mg
3	400 kcal
	5% Glucose = 5 g in 100 mL
	Therefore 2 litres contain
	2 Litres = 2000 mL
	(2000 mL ÷ 100 mL) X 5 g = 100 g
	100 g X 4 kcal = 400 kcal
4	Lidocaine 1 % = 18.6 mL
	Lidocaine 1% = 1 g in 100 mL = 1000 mg in 100 mL
	(186 mg ÷ 1000 mg) X 100 mL = 18.6 mL
	Lidocaine 2% = 9.3 mL
	Lidocaine 2% = 2 g in 100 mL = 2000 mg in 100 mL
	(186 mg ÷ 2000 mg) X 100 mL = 9.3 mL
5	230 mg
	Body surface area for a child weighing 25 kg is 0.92 m ² (see BNF)
	250 mg X 0.92 m ² = 230 mg

6	5000 mg
	To convert to mg
	5 000 000 micrograms ÷ 1000
	= 5000 mg
7	8.5 units per hour
	0.1 units / kg / hr =
	0.1 units X 85 kg =
	8.5 units / hour
8	0.75 mL
	(7.5 mg ÷ 10 mg) X 1 mL
	= 0.75 mL
9	125mL / hour
	1 Litre = 1000 mL
	1000 mL ÷ 8 hours
	= 125 mL / hour
10	5 hours
	1 ampoule = 10 mg in 10 mL
	3 ampoules = 30 mg in 30 mL
	Convert this to micrograms
	30 mg X 1000 = 30 000 micrograms at a rate of 100 micrograms/minute therefore
	30 000 micrograms ÷ 100 micrograms = 300 minutes
	Convert to hours
	300 minutes ÷ 60 minutes = 5 hours

Adapted from calculations questions clinical skills lab Whipp's Cross Hospital 2003 by J Hewitt and Dr E Tsarfati 2013. Additional questions and review by H Walker and S Lau.

Additional questions reviewed and updated by Uzma Shaikh and Thanam Ravagan in June 2020.

REFLECTIVE RECORD

Reflections from prescribing exercise
Date
What I learned from this activity:
Am I going to change anything as a result of this session? / How will I apply learning to my clinical
practice?