PRACTICE DRUG CALCULATIONS

If you need a refresher on how to perform calculations, please follow this link to a resource on the Royal College of Nursing Website: <u>RCN Safety in Numbers</u>

Questions		Answers
1	Convert the following:	
	(a) 0.05 g to mg	
	(b) 0.025 Litre to mLs	
	(c) 1575 micrograms to mg	
	(d) 750 mg to grams	
2	A patient is prescribed 0.25 mg of digoxin orally once daily.	
	How many tablets should you give?	
	(Stock = digoxin 250 microgram tablets)	
3	A patient is prescribed insulin 22 units subcutaneously.	
	How many mLs should you give?	
	(Stock = 10 mL vial of 100 units in 1 mL)	
4	You draw up 10 mL of 2 % lidocaine in a syringe.	
	How many mg of lidocaine is there in 10 mL?	
5	You have a stock vial of diclofenac (75 mg in 3 mL) and need	
	to draw up a dose of 50 mg for your patient.	
	How many mLs should you draw up to give this dose?	
6	A patient weighing 60 kg is prescribed intravenous	
	dopamine 4 micrograms/kg/minute.	
	Calculate the infusion rate in mLs/hour.	
	(Stock = dopamine 200 mg in 50 mL glucose 5%)	

7	What is the total daily dose in mg, when drug B is prescribed	
	to an adult weighing 75 kg at dose of 40 micrograms/kg/day	
	in 3 divided doses?	
0	How many mais required for a single dose in O7 above?	
0	now many mg is required for a single dose in Q7 above:	
9	To administer 500 micrograms of adrenaline intravenously,	
	how many mLs should you give?	
	(Stock = adrenaline 10 mL solution of 1 in 10 000)	
10	To administer 400 micrograms of folic acid syrup orally, how	
	many mLs should you give?	
	(Stock = folic acid 2.5 mg in 5 mLs)	
11	If you want to administer 3 mg / kg of 1 % lidocaine to a 72	
	kg man, how many mLs should you give?	
12	To prepare 62.5 micrograms of digoxin for intravenous	
	administration, how many mLs should you give?	
	(Stock = digoxin 500 micrograms in 2 mL)	
13	You are required to administer 150 mg hydrocortisone	
	intravenously, how many mLs should you give?	
	(Stock = hydrocortisone 100 mg in 2 mL)	
14	To administer heparin 3500 units, how many mLs is	
	required?	
	(Stock = heparin 5000 units in 1 mL)	
15	A child weighing 19 kg requires 400 micrograms/kg of	
	adrenaline 1 in 1000 for nebulisation with a maximum dose	
	of 5 mg.	
	a) What dose should be prescribed for this child?	
	b) How many mLs of adrenaline is required?	

16	A patient weighing 65 kg is prescribed intravenous	
	aminophylline 500 micrograms/kg/hour. Calculate the	
	infusion rate in mLs/hour.	
	(Stock = aminophylline 500 mg in 500 mL sodium chloride	
	0.9%)	
17	A patient weighing 75 kg is prescribed intravenous	
	phenytoin 1500 mg. Over how many minutes can you give	
	the infusion over so that the maximum rate of 50	
	mg/minute is achieved?	
18	A patient weighing 80 kg is prescribed subcutaneous	
	tinzaparin 175 units/kg once daily. How many mLs should	
	be administered to the patient?	
	(Stock = tinzaparin 20 000 units in 2 mL)	
19	A patient is prescribed prednisolone 40 mg once daily in the	
	morning for 5 days.	
	a) How many tablets should you give the patient every	
	morning?	
	b) What is the total number of 5 mg tablets required to	
	complete the course?	
	(Stock = prednisolone 5 mg tablets)	
20	You are required to administer 8 mmols of magnesium	
	sulphate intravenously. How many mLs of magnesium	
	sulphate should you draw up for further dilution?	
	(Stock = magnesium sulphate 5 g in 10 mLs; where 1 g = 4	
	mmols of magnesium)	

ANSWERS TO DRUG CALCULATION QUESTIONS

	Answers to questions in part 1
1	(a) 50 mg
	0.05 g X 1000 = 50 mg
	(b) 25 mLs
	0.025 L X 1000 = 25 mLs
	(c) 1.575 mg
	1575 micrograms ÷ 1000 = 1.575 mg
	(d) 0.75 g
	750 mg ÷ 1000 = 0.75 g
2	One tablet
	NB The correct way of writing the dose on the drug chart is 250 micrograms
3	0.22 mL
	(22 units ÷ 100 units) X 1 mL = 0.22 mL
4	200 mg
	2 % = 2 g lidocaine in 100 mL
	Therefore 0.2 g in 10 mL
	0.2 g X 1000 = 200 mg
5	2 mL
	(50 mg ÷ 75 mg) X 3 = 2 mL
6	3.6 mL/hour
	60 kg X 4 micrograms= 240 micrograms/min
	To convert to micrograms/hour:
	240 micrograms X 60 = 14 400 micrograms/hour
	To convert to mg/hour:
	14 400 micrograms ÷ 1000 = 14.4 mg/hour

	To convert to mLs/hour:
	(14.4 mg ÷ 200 mg) X 50 mL = 3.6 mL/hour
7	3 mg
	75 kg X 40 micrograms = 3000 micrograms which is equal to 3 mg
8	1 mg
	3 mg per day ÷ 3 doses = 1 mg
9	5 mL
	1 in 10 000 = 1 in 10 000 = 1 g in 10 000 mLs, which is the same as:
	1000 mg in 10 000 mLs = 1 mg in 10 mLs
	Convert this to micrograms:
	1 mg in 10 mLs = 1000 micrograms in 10 mLs
	Therefore (500 micrograms ÷ 1000 micrograms) X 10 mLs = 5 mLs
10	0.8 mL
	2.5 mg in 5 mLs = 2500 micrograms in 5 mL
	(400 micrograms ÷ 2500 micrograms) X 5 mL = 0.8 mL
11	21.6 mLs
	3 mg X 72 kg = 216 mg
	1 % = 1 g in 100 mLs = 1000 mg in 100 mLs
	(216 mg ÷ 1000 mg) X 100 mLs = 21.6 mLs
12	0.25 mL
	(62.5 micrograms ÷ 500 micrograms) X 2 mL = 0.25 mL
13	3 mL
14	(150 mg ÷ 100 mg) X 2 mL = 3 mL
7	0.7 m2
15	(3500 units ÷ 5000 units) X 1 mL = 0.7 mL
15	(3500 units ÷ 5000 units) X 1 mL = 0.7 mL a) 5 mg
15	(3500 units ÷ 5000 units) X 1 mL = 0.7 mL a) 5 mg b) 5 mL
15	(3500 units ÷ 5000 units) X 1 mL = 0.7 mL a) 5 mg b) 5 mL a) 400 microgram X 19 kg

	b) 1 in 1000 = 1 g in 1000 mL
	Equivalent to 1000 mg in 1000 mL
	(5 mg ÷ 1000 mg) X 1000 mL = 5 mL
16	32.5 mL / hour
	500 micrograms X 65 kg
	= 32 500 micrograms/hour
	= 32.5 mg/hour
	(32.5 mg ÷ 500 mg) X 500 mL = 32.5 mL/hour
17	30 minutes
	To give 1500 mg at a maximum rate of 50 mg/minute:
	1500 mg ÷ 50 mg = 30 minutes
18	1.4 mL
	175 units X 80 kg = 14 000 units
	(14 000 units ÷ 20 000 units) X 2 mL = 1.4 mL
19	a) 8 tablets
	40 mg ÷ 5 mg = 8
	b) 40 tablets
	8 x 5 = 40
20	4 mLs
	1 g = 4 mmols therefore 2 g = 8 mmols
	(2 g ÷ 5 g) X 10 mL = 4 mLs

Adapted from calculations questions clinical skills lab Whipp's Cross Hospital 2003 by J Hewitt and Dr E Tsarfati 2013. Additional questions and review by H Walker and S Lau.

Additional questions reviewed and updated by Uzma Shaikh and Taruna Patel in June 2020

REFLECTIVE RECORD

Reflections from prescribing exercise

Date

What I learned from this activity:

Am I going to change anything as a result of this session? / How will I apply learning to my clinical

practice?